Team Hashcat write-up for Crack Me If You Can 2014

[Active Members]

alotdv EvilMog NullMode ToXiC
atom hashtka philsmd undeath
blandyuk Hydraze purehate unix-ninja
BlowCane K9 rurapenthe Xanadrel
chancas kontrast23 s3inlc xmisery
dakykilla legion Szul
dropdead m3g9trOn The_Mechanic

[Software used]

List Condense (Hash-Management team software)
hashcat

oclHashcat

Passcovery Suite (for challenge 3)

JIR (for challenge 2 and challenge 4)

Tons of small scripts to generate plains matching patterns

[Hardware used]

Most of us were available all the time. We can say we had around 15-20 members 16H/day working on it.
We had tons of GPU, both AMD and some NVidias, but this time with much less problems regarding to
driver and overheating since we were prepared carefully. However, in this contest, it was not the hardware
power that matters. If you have such slow algorithms then the only way to crack multiples of them is with a
100% straight attack and with a set of password candidates that you really expect to hit.

[The first action to prepare the contest]

was to select a few members that would come up with ways to generate the plains Korelogic wanted us to submit.
The main challenge was to not over complicate the resulting plains. At one point, we actually thought about
dropping out of the contest because we thought it was impossible to generate plains that were difficult enough for
the other teams to crack, yet still within the rules of the contest.

However, we persevered and came up with 31 different ways to generate plains. Only a third of which we
considered “hard”, a third was “medium” and the last third was “easy”.

The base of almost all of our plains was a selection of the rockyou dictionary, which atom came up with.

Wordlist selection process:
1. We'll use rockyou, here's why:

e Makes minga happy, using a full known wordlist

We will select only "rare" words from the wordlist, so that other teams will not quickly realize it's from

rockyou

It's big (14 million entries, makes it hard on slow hashes even if other teams realize it was rockyou)

Assures correct charset from Korelogic

There is a count-version (see link below), so we can pick the lowest used words

Picking lowest used words will steer other teams onto a false track, which our intentional goal is to

poison their google searches, as this will lead them to the wrong dictionaries

e Results will have typos in it, so by mangling typo'd plains the chances are very high other teams "think"
correctly typed word was used so they can't find the mangling algorithm

$ wget http://downloads.skullsecurity.org/passwords/rockyou-withcount.txt.bz2
$ bunzip2 rockyou-withcount.txt.bz2
$ dos2unix -f rockyou-withcount.txt

2. Sort out 8 bit chars

$ /root/hashcat-utils-1.1/reg-exclude.bin 16 < rockyou-withcount.txt | sponge rockyou-withcount.txt

3. Randomly sort it, because original list is sorted alphabetically in 2nd instance

$ sort -R rockyou-withcount.txt | sponge rockyou-withcount.txt

4. Remove words that are "too long". The max allowed length is 12, so we use only words of max length 10

$ /root/hashcat-utils-1.1/len.bin 1 19 < rockyou-withcount.txt | sponge rockyou-withcount.txt

5. Select only words from low "occurrence" types used for poisoning

$grep" 2" rockyou-withcount.txt > final
$grep" 3" rockyou-withcount.txt >> final
$grep" 4" rockyou-withcount.txt >> final
$grep" 5" rockyou-withcount.txt >> final
$grep" 6" rockyou-withcount.txt >> final

$grep" 7 "rockyou-withcount.txt >> final

$ mv final rockyou-withcount.txt

6. Now it's safe to remove the counter
$ cut -b9- < rockyou-withcount.txt | sponge rockyou-withcount.txt
7. Remove user "mutations”. This step is optional, but using only clean words gives us easier readable
mutated results. This increases the chances that Korelogic will accept them as they are human readable
$ /root/hashcat-utils-1.1/reg-exclude.bin 8 < rockyou-withcount.txt | sponge rockyou-withcount.txt

$ /root/hashcat-utils-1.1/reg-exclude.bin 4 < rockyou-withcount.txt | sponge rockyou-withcount.txt
$ /root/hashcat-utils-1.1/reg-exclude.bin 2 < rockyou-withcount.txt | sponge rockyou-withcount.txt

8. Now we ensure the remaining words are not just found in rockyou.txt in case the other teams grep for the
words instead of using google

It's better for us if they have multiple matches.

e To make this possible, we need to create a small tool that checks if the remaining words are in a different

common wordlist
e To bring any sense into the next action, it's important that the other common wordlists are bigger than
rockyou in case other teams select the wrong one

$ twodict.pl

9. Using the “twodict.pl” script, we make sure remaining words are also in other common wordlists as well:

$ perl twodict.pl wikipedia-wordlist-sraveau-20090325.txt rockyou-withcount.txt > pre-final

10. At this point, there are ~195k words left, example:

puala kalongan palay
gregw spongecakes whippo
cankles jolibois guding
zailor boskoop

11. One more round, just for safety

$ perl twodict.pl wikipedia-wordlist-sraveau-20121203.txt pre-final | sponge pre-final

12. At this point, there are ~91k words left, example:

cankles boskoop paltin
benado hubsch gaadir
garmisch adoptada whate
chemney arester aryeh
neata

There are some "hard" ones and some that seem to be usernames, etc.

If we put in usernames it's easier for them to recognize the original list is rockyou, but usernames are
mostly in english.

So we will remove all words that include english substrings, names and so on, etc..

To get there, some more work is needed:

13. Little perl script to remove lines that match substrings from a different list:
$ http://rlimatches.pl

Running this perl script is extremely inefficient, so it will take ages; have patience!
The output will be written to "rockyou-withcount.ixt.left"

And that's what it is, the stuff that survived the top10k passwords

This is used to strongify the selection of the remaining plains

14. First we remove top10k passwords

$ head -10000 /root/dict/untouched/rockyou.txt > top10k.txt
$ perl rli-matches.pl top10Kk.txt
$ mv pre-final.left final

15. At this point, there are ~82k words left, example:

cankles boskoop paltin

benado hubsch qaadir

16. One more round, just for safety

$ mv pre-final.left pre-final

$ head -1000 /root/dict/untouched/facebook-first.txt > fb1k.txt
$ perl rli-matches.pl fb1k.txt

$ mv pre-final.left final

17. At this point, there are ~78k words left, example:

cankles boskoop benado
hubsch gaadir garmisch
adoptada whate chemney

18. A quick test shows that the remaining words are in many big common dictionaries:
$ grep ~adoptada$ *
rockyou.txt:adoptada
wikipedia-wordlist-sraveau-20090325.txt:adoptada
wikipedia-wordlist-sraveau-20121203.txt:adoptada
$ grep ~chemney$ *
facebook-last.txt:chemney
rockyou.txt:chemney

wikipedia-wordlist-sraveau-20090325.txt:chemney
wikipedia-wordlist-sraveau-20121203.txt:chemney

19. Split the result into 60 x 1k wordlists for further processing

$ split -| 1000 final

xaa, xab, etc are the final outfiles.

Theoretically any of the outfiles are equally good, pick whichever you want.
Searching them with google should result in crap, not in rockyou.

If that's the case, we successfully poisoned the list, since we didn't modify anything to the original
list, so minga can't complain. :)

All password generating code can be found here: https://hashcat.net/events/CMIYC2014/passgen/

The next step was to provide an overview and a platform to compile everything. | set up the google
spreadsheet below mainly to keep track of the length distribution.

Total Current Password Submissions 20000 20000 10000 3000 7000 60000 Submited:
Total Required Password Submissions 20000 20000 10000 0 0 60000 31
Missing 0 0 0 0 0 0 100.00%

length length length
name description length 8 length 9 10 11 12 size submitted

one input base words, appends first 4 byte of
atom-01 cryptographical weak digest encoded with KL charset 0 1000 1000 0 0 2000 TRUE

one input base words, append sum of telephone
atom-03 countrycodes matching 2-char iso-3166 countrycode 0 0 2000 0 0 2000 TRUE

one input base words, permutes the word x times. x =
atom-04 product of all ascii values of the chars in the word 0 0 0 0 1000 1000 TRUE

one input base words, appends first 4 byte of md5
atom-05 digest encoded with KL charset 0 1000 1000 0 0 2000 TRUE

one input base words, mix-in first 4 byte of md5
atom-06 digest encoded with KL charset 0 1000 1000 0 0 2000 TRUE

same as atom-5 but encoded with charset limited to
atom-07 a-z only 0 0 0 0 1000 1000 TRUE

same as atom-6 but encoded with charset limited to
atom-08 a-z only 0 0 0 0 1000 1000 TRUE

one input base words, rotate consonants a->e, e->i,
atom-10 etc 0 0 0 0 1000 1000 TRUE

one input base words, first char -1, second char +1,
atom-11 third char -1, ... 0 0 0 0 1000 1000 TRUE

one input base words, simply mirror in the middle:
atom-12 password -> wordpass, 12345 -> 45312 0 0 0 0 1000 1000 TRUE

one input base words, us keyboard vertical replace, 1
atom-13 becomes q, g becomes a, a becomes z, etc 0 0 1000 0 0 1000 TRUE

two input base words, use first 3 char from each and
join, then apply rule "TX $Y $Z" where X=[012345],

atom-15 Y=2d, Z=7s 2000 0 0 0 0 2000 TRUE
two input base words, filter in both char by char, then

atom-16 apply rule "TX AY $Y" where X=[1234567], Y=2d 0 2000 0 0 0 2000 TRUE

blandyuk-4 J1 oXY iXY iXY TN r 600 600 400 400 0 2000 TRUE

blandyuk-7 [K{ IXY iXY TN TN TN 600 600 400 400 0 2000 TRUE

blandyuk-8 uiXY iXY iXY TN 600 600 400 200 200 2000 TRUE

blandyuk-9 {{{ so! se$ si3 TN 600 600 400 400 0 2000 TRUE

blandyuk-A f]l sa® su+ TN TN 600 600 400 200 200 2000 TRUE

dropdead-1 prepend, append random chars 1000 1000 0 0 0 2000 TRUE
insert random chars after pos 2 based on 4 char

dropdead-2 words (xmisery-7) 1000 1000 0 0 0 2000 TRUE
insert random chars after pos 3 based on 5 char

dropdead-3 words 1000 1000 0 0 0 2000 TRUE

dropdead-5 Forex Symbols with m1 and d1 timeframe 2000 0 0 0 0 2000 TRUE

k9-1 ceasar with substr4 967 1033 0 0 0 2000 TRUE

xmisery-1 ROT47 600 600 400 400 0 2000 TRUE

xmisery-2

xmisery-3

xmisery-5

xmisery-7

undeath-1

dropdead-6

unixninja-1

[The second main part of our preparations]

ROT47 Reversed
ROT13 Reversed + Pattern (digit,digit,special,special)

Pattern Prepend
(special,special,special,special,digit,digit) + Word

Pattern Insertion Wo +
(special,special,special,special) + rd

scraped from anisearch.com

?a?aatom?a?a (variable before and after) with toggle
cased "atom" baseword

Baseword "star" tmesis against webster's dictionary +
leetspeak and toggle rule

600
600

600
417

3216

3000

600
600

200

600
583

4784

400

400

400

400

400
200

200

200

200

200

200

2000

2000

1000

2000

1000

8000

3000

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

was to bring new members to the team. Our headhunter was blandyuk, who did a great job bringing amazing new
talents to our team.

For our collaboration during the contest we used the Hash-Exchange-System LC again, which we had been using

at the previous contests and has been greatly improved and maintained by Xanadrel.

LC | Hashcat team History

Hash lists
EhlE ey oL Filter ype. - .

Upload MName Type Found Left Total Progress Points Possible
c5_mssql 131 mssql{) 685 1,516 39.91% 3,025 7,588
c2_mssqgl_131 mssql() 389 852 45.66% 1,945 4,260
c4 mssql 131 mssql() 487 1,517 32.18% 2,435 7,585
vm_mysgl 380 mysql5() 3 4 75.00% 68 28
vm_phpass_488 phpass() 1 1,008 8.1e% 480 400,808
vm_descrypt_... crypt-des() 1,000 91.10% 50,185 55,808
vm_nsldaps_111 sshal() 1,002 21.56% 21,6080 168, 208
c3_oraclellg... oraclelig() 804 28.19% 7,568 26,828
c4 oraclellg... oraclellg() 836 39.00% 9,780 25,080
c5_oraclellg... oraclelig() 11.11% 998 8,910
c5_mssql2e12. . . mssql2e12() 18.81% 3,208 29,6088
c5_1m_3eee lanman() . 007 1,872 1,872
c4_1m_38ee lanman() . 863 1,089 1,089
c3_1m_3eee lanman() Z 1,793 1,793
c2_1m_3ee8 lanman() . 887 767 767
cl_1m 3868 lanman() 2 810 818
c5 sha512_1788 sha512() ? 11,214 18,450
c5_shal_ 1688 shal()] 1,533 2,855
¢5_mds_@ md5 () : [-) 208
c5_ntlm 1088 ntlm() : 2,496 3,858

c5_shabl2cry... crypt-sha512() 46,280 479,588

c5 md5crypt ... crypt-mds 54,675 153,675

Our two main ways of communication this time were an IRC-Channel and another Google spreadsheet.

[In advance of the contest]

we decided to divide our members into 4 groups and assign them algorithms to work on. This soon turned out to
be unproductive since Korelogic decided to group their plains up into 5 “companies” and divide the pool of plains
into 13-19 algorithms. A few hours into the contest, we therefore decided to change the assignments of our groups
to align more accordingly to Korelogic’s companies and challenges. The assignments changed again during the
second half of the contest several times. The main purpose of this was to mix up the analysis of patterns that
everyone did.

Group 1 2 3 4
Count 8 7 7 7

#teamchannel1 #teamchannel2 #teamchannel3 #teamchannel4

Members BlowCane atom alotdv chancas

coolbry95 blaz blandyuk dakykilla
epixoip legion dropdead Hydraze
evilmog NullMode hashtka K9
kontrast23 s3inlc philsmd purehate
rurapenthe xan Szul Rolf
ToXiC Xmisery The_Mechanic undeath
unix-ninja
Assigned
Algos
(will Company1 Challenge3 Company3 Company4
change Company5 Company?2 Challenge8 vm_mysq|
during vm_ssha vm_phpass_400 Challenge5 vm_des
contest) vm_shadow_1800 Challenge4 Challenge6
[Contest]

Whenever a contest starts, it takes a few hours to find out what hash-types are used, in which format they are, etc.,
etc. So that was our first action before we started cracking.

With these screenshots you can see the company specific hash-types identified. Note that not all hash-types can
be listed as not all hash-types are supported by our system.

https://hashcat.net/events/CMIYC2014/pics/result c1c2.png
https://hashcat.net/events/CMIYC2014/pics/result_c3c4.png
https://hashcat.net/events/CMIYC2014/pics/result_c5vm.png

Also note, these are screenshots from after the contest, that is why there are results listed.

Once we finished with Free-For-All (FFA) cracking, we began with pattern analysis. This time we spent nearly all of
our time on this part as from experience with previous contests it turned out this is the key to win a contest.

Here's the pattern we noticed during the entire contest

Global pattern: https://hashcat.net/events/CMIYC2014/pics/pattern_global.png
Company pattern: https://hashcat.net/events/CMIYC2014/pics/pattern_companies.png

[WPA]

https://www.google.com/url?q=https%3A%2F%2Fhashcat.net%2Fevents%2FCMIYC2014%2Fpics%2Fresult_c1c2.png&sa=D&sntz=1&usg=AFQjCNF8T_OPfDqYHyjHOU5hjCQX9s3--A
https://www.google.com/url?q=https%3A%2F%2Fhashcat.net%2Fevents%2FCMIYC2014%2Fpics%2Fresult_c3c4.png&sa=D&sntz=1&usg=AFQjCNGCek5X3NsWRUfl3p69zOR0-j_-oQ
https://www.google.com/url?q=https%3A%2F%2Fhashcat.net%2Fevents%2FCMIYC2014%2Fpics%2Fresult_c5vm.png&sa=D&sntz=1&usg=AFQjCNEH-oWB6qbLeaQ-Dk_gmaBtr6HbXw
https://www.google.com/url?q=https%3A%2F%2Fhashcat.net%2Fevents%2FCMIYC2014%2Fpics%2Fpattern_global.png&sa=D&sntz=1&usg=AFQjCNFrHqCHoHqbketJVGQOC_tjU_JMBg
https://www.google.com/url?q=https%3A%2F%2Fhashcat.net%2Fevents%2FCMIYC2014%2Fpics%2Fpattern_companies.png&sa=D&sntz=1&usg=AFQjCNHVHlJ51IFWbikH2sa5etHUsFIfTA

The WPA's found in the companies 2, 3, 4 and 5 at position 14 were in JtR format. That's a bit of a problem as
there exists no converter from JtR format to any other format, we would have been forced to use JtR for cracking
those WPA.

| think that was a bit a bad decision from KoreLogic. It would have been OK if they simply generated network .cap
files. In that case all WPA crackers would have been able to load it.

What | had to do is to patch JiR a bit. Good thing is that JtR internally uses hashcat c-types for WPA cracking. All |
had to do was to store the hccap structure once it was loaded by JtR and write it to a file so that hashcat was able
to load it:

This patch to wpapsk.h from JtR did it:

[code]

FILE *fd = fopen ("lala.hccap”, "ab");
// Debug_hccap();

fwrite (&hccap, sizeof (hccap), 1, fd);
fclose (fd);

[/code]

Atfter that, | simply ran JtR with the KoreLogic format and all handshakes were stored to lala.hccap, per company.
The result are 4 big .hccap files, but it's no problem as hashcat can load multiple handshakes at once. Results
can be found here:

https://hashcat.net/events/CMIYC2014/hccap/

[Challenge?2]

As no hashcat software supports cracking of .docx files, we had to use JtR to crack them. The JtR version used is
the one maintained at magnums github tree.

For the pattern, it was obvious they were all mangled version of the basewords:
e 123456 (?)
e password
e microsoft

There must be more basewords, but we didn't manage to identify them in time. This algo is so damn slow!

Here's how we organized the mask based cracking:
https://hashcat.net/events/CMIYC2014/pics/challenge2_masks.png

[Challenge3]

https://www.google.com/url?q=https%3A%2F%2Fhashcat.net%2Fevents%2FCMIYC2014%2Fhccap%2F&sa=D&sntz=1&usg=AFQjCNEBgtO80OPus-wNyInLBsCmF6iDqA
https://www.google.com/url?q=https%3A%2F%2Fhashcat.net%2Fevents%2FCMIYC2014%2Fpics%2Fchallenge2_masks.png&sa=D&sntz=1&usg=AFQjCNFSvxMA14zYFLsmFOXNTuUZkNLy7A

Not much to mention here as all passwords were simple digits. @KoreLogic: was this a result of a banned plain
from another pro-team?

Again, as hashcat does not support cracking of .doc files, we had to use JtR to crack them. The only problem here
was that the files were unable to be cracked with JtR for some unknown reason. They simply did not crack even
when giving the correct password. Due to the time pressure | didn't try to fix the problem.

| simply switched to Passcovery to crack them. That was a bit of a problem too, as Passcovery does not allow
multi-hash cracking for .doc files. So | wrote a simple batch-script and called it 1000 times :)

[Challenge4]

Same as Challenge3, ran some dictionaries against it and found patterns based on financial words such as

“billing”, “expense”, “mastercard”, “credit”, etc. and then produced wordlists based on those basewords
discovered.

[Challenge5]

Some of us tried to load the rars into different rar-cracking tools but since it was rarv5 which we figured out
afterwards no tool supported it. We managed to convert the hashes with john and load them into john but failed to
crack any of them.

[Challenge6]

Same as Challenge5.

[Challenge7]

Challenge 7 appeared to some of the members of team hashcat as a very interesting Challenge. We quickly found
out that this only could be Cisco's new scrypt hash type (the other new one that we did see in the wild is type 8
which according to some cisco documents seems to be using PBKDF2-SHA256).

We tried to crack the Challenge 7 hashes with the scrypt configuration N = 16384, r =1, p = 1. The base64 table for
the encoding/decoding part that we tried to use is;
./0123456789ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopgrstuvwxyz .

Unfortunately, we did not crack any hash in a reasonable amount of time. But after we saw this tweet from
Korelogic (https://twitter.com/CrackMelfYouCan/status/497809778580533248) that Challenge 7 was now
disabled, we completely moved on to crack other Challenges/hashes and did not try further to understand that
hash format, nor did we try to crack the hashes anymore.

[VM exploration]

For the virtual machine given in a .ova file, we already knew the password for LUKS from KoreLogic (
http://contest-2014.korelogic.com/VM_Challenge_notes.txt), but after that, we also needed the root and/or cmiyc
user's password. Of course there could be many ways to get to the /etc/shadow file etc., but we decided to just start
an Ubuntu live cd in .iso format that we had handy and mounted the encrypted drive from the live cd. After that, we
were able to dump /etc/shadow, modify it to change the root user's sha512crypt hash and look around at other
interesting files etc. Afterwards, we rebooted and logged in w/ the modified root password.

From then on we were able to find several hints about passwords e.g. within text files starting from the root folder / .
Furthermore, with those hints and some configuration files, we quickly identified some patterns like
"wppassword123!@#", "cmiycpassword123!@#" etc. We then went on and were able to decrypt the ecryptfs home
folder of the cmiyc user. Unfortunately, we didn't find many hashes there, as we were initially expecting to find
under that encrypted cmiyc folder. In the end, we can't complain, as the virtual machine did provide us with several
hash lists easily obtained, including mysql 4/5, phpass, descrypt, Idaps/ssha and sha512crypt hashes.

[Management during the contest]

was mainly to keep in contact with Korelogic, submit our finds, and fix our problems which we had a lot of. First off,
there was a problem submitting the doc and docx plains. Although Korelogic initially explained on their FAQ a
format that suggested to submit them as “filename plain”, this did not work. Throughout the first half of the contest,
Korelogic’s DoS-filter kicked in and kept us from submitting and kept our users from viewing the overall contest
statistics.

Another big problem for us was the submission of the LM hashes. Since we had to split them into two halves, we
were uncertain why we only had 9000 registered cracks, but almost 12000 founds, while other teams had 10000 to
11000 registered cracked. One friendly guy at Korelogic tried to debug this with us, but the contest ended without a
solution.

Another problem was the submission of DES, SHA512, mssql and vbulletin hashes, which Korelogic eventually
managed to fix.

Additionally, there were hash types/lists which Korelogic’'s system did not care about at all, like the vm_mysq]l, but
were later happy to include.

The “scrypt” subject is a little controversial, since we spent many hours trying to crack in addition to all of the hard
work that atom spent to figure out the correct settings for how the hashes had been produced. Korelogic later just
removed these hashes. The scrypt value of 9999 was too high to allow for dupes, which some street teams were
receiving credits for after cracking other hash types. On the other hand, with Korelogic just removing these hashes
altogether from the contest was also disappointing, considering all of the energy that our team put into this which
was now lost time and energy. We would have rather seen just a reduction of the value.

In contrast to our feeling on scrypt, we were happy to see the removal of the grub2 hashes after our inquiry into
Korelogic that its’ salt were bogus.

[Thoughts about the contest]

are pretty good despite the initial doubts about the new precontest methods. The process of generating plains for
the other teams to crack, while staying within the rules of Korelogic to keep things simple, was painful. It was very
unsettling to not know which of our plains would be rejected by penalty and replaced by all digits, and which ones
would make it. Despite all of our initial doubts about the teams creating the plains, it was a very pleasurable
experience since the overall plains were structured in a way that we managed to keep finding them, which was not
the case in other contests. Also, we were very happy communicating with Korelogic’s support throughout the
duration of the contest. They took great effort into solving every problem that we presented to them.

[Thanks]

Ty Fox :)

