EXPLOITING A SHA1
WEAKNESS IN
PASSWORD CRACKING

About me
S

- Name: Jens Steube
- Nick: atom
- Coding Projects:

o hashcat / oclHashcat
o Security Research:
o Searching for exploitable security holes in OSS and non-0OSS Software

o Reported and worked together with the developers to fix them
o See Bugtraq / Debian Security Advisory

= Work Status: Employed as Coder, but not crypto- or security-relevant
~ Weakness found in 1st quarter of 2011

What we should know about SHA1
S 1

= SHA1 is processed sequentially
o Each block of input data that is processed has a fixed size of 512 bit
o This block is represented as an array of sixteen 32-bit words
o We will call this array W[]

o The input data is expanded by another 2048 bits of data
o This expanded data is generated out of the input data
o We call this phase "Word-expansion”
- Both input and expanded data is used within 80 steps of SHA1 functions
o These steps and theirinclusion of SHA1 specific function is the major part of SHA1
o We will not focus on them

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

SHA1 Transform per Instructions

Word-Expansion m—!

16 - 79
ROTATE 1 16 - 79

SHA1 Step F1 1 0-19
SHA1 Step F2 2 20 - 39
SHA1 Step F3 2 40 - 59
SHA1 Step F4 2 60 - 79

ADD 4 80

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

Word-Expansion

(|

|

Word-Expansion is a phase of the SHA1 transformation

Its purpose is to generate a bigger volume of data out of the input data

This is where the weakness is located in SHA1

Input data is mixed up using the following set of logical instructions:
W[t] = R((W[t-3] ~ W[t-8] ~ W[t-14] ~ W[t-16]), 1)

WJ[O0] .. W[15] is filled with the input data

By iterating t from 16 to 79, 2048 additional bits are generated

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

Word-Expansion, unrolled view
- f

w[16] = RC(W[13] A w[8 A w[2] A w[0D, D W[30] = RC(W[27] A w[22] A w[1l6] A w[1l4]), 1)
W[17] = RC(W[14] A w[91 A w[3] A w[1D, D W[31] = RC(W[28] A w[23] A w[17] A w[15]), D
w[18] = RC(W[15] A w[10] A w[4] A w[2D, D W[32] = RC(W[29] A w[24] A w[18] A w[l6]), 1
w[19] = RC(w[16] A w[11l] A w[5] A w[3D, D W[33] = RC(W[30] A w[25] A w[19] A w[17]), D
w[20] = RC(W[17] A w[12] A w[6] A w[4D, D W[34] = RC(W[31] A w[26] A w[20] A w[18]), D
w[21] = RC(W[18] A w[13] A w[7] A w[5]), D W[35] = RC(W[32] A w[27] A w[21] A w[19D), D)
w[22] = RC(W[19] A w[14] A w[8] A w[61D, D W[36] = RC(W[33] A w[28] A w[22] A w[20]), D
wW[23] = RC(W[20] A w[15] Aw[9] A w[7D, D W[37] = RC(W[34] A w[29] A w[23] A w[21]), D
w[24] = RC(W[21] A w[16] A w[10] A w[8]), D W[38] = RC(W[35] A w[30] A w[24] A w[22]), D
w[25] = RC(W[22] A w[17] A w[11] A w[91D, D W[39] = RC(W[36] A w[31] A w[25] A w[23]), D
w[26] = RC(W[23] A w[18] A w[12] A w[10]), D W[40] = RCW[37] A w[32] A w[26] A w[24]), D
wW[27] = RC(W[24] A w[19] A w[13] A w[11l]), D W[41] = RC(W[38] A w[33] A w[27] A w[25]), D
wW[28] = RC(W[25] A w[20] A w[14] A w[12]), D

w[29] = RC(W[26] A w[21] A w[15] A w[13]), D W[79] = RC(w[76] A w[71] A w[65] A w[63]), 1)

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

How to exploit this

The password candidate generator needs to hold W[1]..W[15] fixed

Outside the loop precompute W[16]..W[79] ignoring the unknown W[O0]
o We call this precomputed buffer PW[]
Inside the loop W[O0] is changed

o Since the Word-Expansion process is using XOR, we can apply W[0] to the
precomputed buffer at a later stage

o Using XOR is the root of the problem
o Logical instructions cannot overflow, but arithmetic ones can
o Ifthe Word-Expansion had used ADD, it would have been impossible to exploit it

When iterating W[0] changes is finished, W[1]..W[15] can be changed
Restart the process with the next precomputed value of W[16]..W[79]

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

PW[16]..PW[79] in the outer loop
T

PW[16] = RCC W[13] A w[8] A w[2] ~—~wFo64), 1) PW[30] = R((PW[27] A Pw[22] A Pw[1l6] A Ww[14]), 1)
Pw[17] = RCC w[14] A w[91 A w[31 A w[11D, D PwW[31] = RC(PwW[28] A Pw[23] A PW[17] A w[15]), D)
Pw[18] = RCC w[15] A w[10] A w[4] A w[2]), 1) PwW[32] = R((PW[29] A Pw[24] A Pw[18] A Pw[16]), 1)
Pw[19] = RC(PwW[16] A Ww[11] A w[5] A~ w[31D, 1D Pw[33] = RC(PW[30] A Pw[25] A Pw[19] A PW[17]), 1)
Pw[20] = RC(PwW[17] A w[12] A w[6] A w[4]), 1 Pw[34] = RC(PW[31] A Pw[26] A PwW[20] A Pw[18]), 1)
Pw[21] = RC(PwW[18] A w[13] A w[7] A w[5]), 1) PW[35] = RC(PwW[32] A Pw[27] A pPw[21] A Pw[19]), 1)
Pw[22] = RC(PW[19] A w[14] A w[8] A w[6]), 1) PW[36] = RC(PW[33] A Pw[28] A Pw[22] A Pw[20]), 1)
Pw[23] = RC(Pw[20] A w[15] A w[91 A~ w[7DD, 1 PW[37] = RC(PW[34] A Pw[29] A PwW[23] A Pw[21]), D)
Pw[24] = RC(Pw[21] A pPw[16] A w[10] A~ w[8]), 1D Pw[38] = RC(PW[35] A Pw[30] A Pw[24] A Pw[22]), 1)
Pw[25] = RC(Pw[22] A Pw[17] A w[11] A w[9]), 1) PW[39] = R((PW[36] A Pw[31] A Pw[25] A Pw[23]), 1)
Pw[26] = RC(Pw[23] A Pw[18] A w[12] A w[10]), 1) PwW[40] = RC(PW[37] A Pw[32] A Pw[26] A Pw[24]), 1)
PW[27] = RC(PwW[24] A Pw[19] A Ww[13] A w[1l1]), 1) Pw[41] = RC(PW[38] A Pw[33] A Pw[27] A Pw[25]), 1)
PW[28] = RC(Pw[25] A Pw[20] A w[14] A~ w[12]), 1)

Pw[29] = RC(PwW[26] A Pw[21] A Ww[15] A w[13]), 1) PW[79] = RC(PW[76] A PW[71] A PW[65] A Pw[63]), 1)

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

W[O] in the inner loop

wo_1
wo0_2

w020

w[16]
w[17]
w[18]
w[19]
w[20]
w[21]
w[22]
w[23]
w[24]
w[25]
w[26]

R(wW[O], 1
R(W[OI, 2)

o - For 1..20 compute R(W[0], i)
R(W[O], 20)

; = PW[16] A wO_1
= PW[17]

: = PW[18]

; = PW[19] A w0_2
R A w2 A—wi63—AwE4+3 = Pw[20]
REHERT—A—wEBT—A—wb—AwE53 = pw[2l]
REEEH—A—wiH—A—wE81+—AwE61+3> = Pw[22] A w0_3
R0 w5 H—A—wE 934w+~ = pw[23]
REW 26w w383 = Pw[24] A w0_2
rewE22H—A—wir—A—wi w993 = Pw[25] A w0_4
REWHES WS T—A—wi2i——wi6+3> = Pw[26]

Jens Steube - Exploiting a SHA1 weakness in password cracking

4. Dec2012

Word-Expansion using precompute

w[30]

w[31]
w[32]

w[33]

PW[30] A

PW[31] A
PW[32] A

PW[33] A

wo_4
wO_4
wo_4
wo_2
wO_6
w0_3
wO_2
wO_5
wO_5
wO_5
wo_3
wO_5
wo_3

I .. —————

W[34] = PW[34] A
w[35] = PW[35] A
A
A
A
A
W[36] = PW[36] A
A
A
A
A
A
A
A

wo0_7
w0_4
wO0_3
w0_4
wO0_4
w0_3
w0_4
w0_4
w0_6
w0_6
w0_6
wO0_6
wO_6
wO0_4

1 B < 4 operations
0 = 4 operations
> 4 operations

Number of Operations:

W[16] = 1
W[17] = 0
W[33] = 6
W[43] = 308
W[75] = 4703

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

What we should know about XOR
T 1

- XORing a value to itself, results in O
~» XORing a value with 0, results in the same value

Conclusion:

= We can ignore many XOR operations in order to optimize the procedure
= We can do this if the sum of a specific value is even

A Perl script to automate this process can be found in the link section

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

Word-Expansion / XOR zeros
S

w[41] = RC(W[38] A w[33] A w[27] A w[25]), 1) —-—— w[41] =
PW[41] A
\% \% \% \% A f
w[38] = w[33] = w[27] = w[25] = wo_4 A
PW[38] A PW[33] A PW[27] A PW[25] A wo_4 A
WO_5 A wo_5 A wo_3 A wO_4 wWo_4 A
Wo_5 A wo_5 A wo_3 wo_4 A
WO_5 A wo_5 A +1 wo_4 A
wo_4 A wo_3 A — WO_5 A
wo_4 A wo_5 A wo_5 A
WO_5 A wo_3 wWo_5 A
WO_5 A wWo_5 A
WO_5 A wo_6 A
Wo_3 A Wo_6 A
Wo_3 A wWo_6 A
wo_4 WO_6 A
wWo_6 A
WO_6 A
wo_6 A
W[A1] = PH[41] eees————
WO_6 A

wo_6

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

Word-Expansion / XOR groups
N

W[36] = PW[36] A WO_6 A WO_4
W[51] = PW[51] A WO_6 A WO_4
_ PW[62] A WO_6 A WO_4 A WOI2 A WO_8

w[62]

!

w0_6 A wO_4

const int wO_6__ w0_4

!

W[36] = PW[36] A WO 6 w0 4
W[51] = PW[51] A W0 6__ w0 4
— PW[62] A WO 6 WO 4 A WOI2 A WO_8

w[62]

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

Final optimized Word-Expansion

w[16] = RC(W[13] A w[8] A w[2] Aw[0]), D w[16] = Pw[16] A wO_1
W[17] = RC(W[14] A w[9] A w[3] Aw[1), D w[17] = pw[17]

W[18] = RC(W[15] A w[10] A w[4] Aw[2]), D w[18] = Pw[18]

w[19] = RC(W[16] A w[11] A w[5] A w[3]), D) w[19] = Pw[19] A wO_2
w[20] = R((W[17] A w[12] A w[6] Aw[4]), D w[20] = Pw[20]

w[21] = RC(W[18] A w[13] A w[7] Aw[5]), D w[21] = Pw[21]

w[22] = RC(W[19] A w[14] A w[8] Aw[6]), D w[22] = Pw[22] A w0_3
w[23] = RC(W[20] A w[15] A w[9] Aw[7]), 1 w[23] = Pw[23]

w[24] = RC(W[21] A w[16] A w[10] A w[8]), D) w[24] = Pw[24] A w0_2
w[25] = RC(W[22] A w[17] A w[11] A w[9]), D wW[25] = PW[25] A wO_4
w[26] = RC(W[23] A w[18] A w[12] A w[10]), D) w[26] = Pw[26]

W[27] = RC(W[24] A w[19] A w[13] A w[11l]), 1) w[27] = Pw[27]

w[28] = RC(W[25] A wW[20] A w[14] A w[12]), 1) w[28] = Pw[28] A wO0_5
W[29] = RC((W[26] A w[21] A w[15] A w[13]), D w[29] = Pw[29]

w[30] = RC(W[27] A w[22] A w[1l6] A w[14]), 1) w[30] = Pw[30] A wO_4 A wO_2

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

SHA1l instruction count;
Unoptimized
s

Word-Expansion 16 - 79
SHA1 Step F1 140 0-19
SHA1 Step F2 160 20 - 39
SHA1 Step F3 160 40 - 59
SHA1 Step F4 160 60 - 79
Final Add 4 80

Total 880

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

SHA1l instruction count;

Known optimizations
N

Word-Expansion 16 - 75
SHA1 Step F1 140 0-19
SHA1 Step F2 160 20 - 39
SHA1 Step F3 160 40 - 59
SHA1 Step F4 128 60 - 75

Total 828

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

SHA1l instruction count;
Exploiting SHA1's XOR weakness
2

Word-Expansion 16 - 75
SHA1 Step F1 140 0-19
SHA1 Step F2 160 20 - 39
SHA1 Step F3 160 40 - 59
SHA1 Step F4 128 60 - 75

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

Final comparision

mm Optimization

Unoptimized 0 %
- Known optimizations 828 5.1%
- This weakness, exploited 694

21.1 %

Jens Steube - Exploiting a SHA1 weakness in password cracking 4. Dec2012

Files for download

I
Download here: https://hashcat.net/pl12/

o This presentation
o XORzero generator Perl script
o Full code results from slides

https://hashcat.net/p12/

Questions?
B

Feel free to contact mel!

via Twitter: @hashcat

via Hashcat Forum: https://hashcat.net/forum/
via IRC: Freenode #hashcat

via Email: atom at hashcat.net

https://hashcat.net/forum/

