
Advanced password
guessing
Hashcat techniques for the last 20%

Version 1.0 - 2013.05.12

About me

 Name: Jens Steube

 Nick: atom

 Coding Projects:
 hashcat / oclHashcat

 Work Status:
 Employed as Coder but not crypto- or security-relevant

Jens Steube - Advanced password guessing 2

Tools Overview
the hashcat universe

Jens Steube - Advanced password guessing 3

Tools overview

Name Type

hashcat Multi-purpose cracker on CPU

oclHashcat-plus Multi-purpose cracker on GPU,
Flagship

oclHashcat-lite Competition cracker on GPU,
Performance

hashcat-utils Set of handy commandline
utilities in password guessing

maskprocessor Standalone word-generator
with mask support, very fast

statsprocessor Standalone word-generator
based on markov-chains

Jens Steube - Advanced password guessing 4

Masks
Why to use them - not how

Jens Steube - Advanced password guessing 5

Masks

 Masks are often used in hashcat, and one can greatly benefit
from it if they know how to use them

 Masks are usually a simple topic, but too many people still
don’t know how to use them, or why

 I’ll show you a reason why hashcat makes use of them

Jens Steube - Advanced password guessing 6

Masks

 Imagine you want to configure a program to generate all
words of:

 aaa – zzz

 There are many ways to do it, for example:

 It could have the ability to set a charset (lalpha)

 It could have the ability to set a password-length (3)

 It’s an intuitional approach - And already requires two
parameters to be set

Jens Steube - Advanced password guessing 7

Masks

 For some reason, you have additional information about the
password

 You know it ends with 1984

 How would you want the program to accept this additional
information?

 Add a parameter that lets you define a salt to append

 That’s very intuitional, again

 But at this point our program already need 3 parameters

Jens Steube - Advanced password guessing 8

Masks

 One more example

 People tend to capitalize the first letter of a password but
not the rest

 How could you tell that to captilize only the first letter?

 Well, add a flag for this ...

 What about if you know the password capitalizes the first
two letters?

 Finally, your program will require more and more parameters

Jens Steube - Advanced password guessing 9

Masks

 Masks can solve this!

 Don’t worry, they are by far not as complex as regular
expressions

 Two reasons:

 Need to be calculated fast (see performance table)

 Need to be easy to understand

 To learn how to use mask attacks with hashcat, read the
"Mask Attack" article on the hashcat wiki, it's only 2 pages

Jens Steube - Advanced password guessing 10

maskprocessor
High-performance standalone word-generator

Jens Steube - Advanced password guessing 11

maskprocessor

 Maskprocessor is a standalone program that requires at least
one parameter: The mask

 It then prints all words from the selected keyspace to stdout
or to a file

 There are many scenarios where you can use this program

Jens Steube - Advanced password guessing 12

maskprocessor

 For example: Aircrack-ng. Aircrack-ng? Yes!

 Aircrack-ng does not have support for masks, but it does
have support for reading candidates from stdin

 The command:

 mp64 ?l?l?l?l?d?d?d?d | aircrack-ng -w –

 Works on Linux and Windows. Yes, windows can do pipes!

 You don’t need to write it into a wordlists and waste
gigabytes of hdd space plus that would produce unnecessary
I/O while loading it from disc

 In case you ever wished aircrack-ng should have brute-force
abilities for WPA/WPA2 you can do that this way (have fun)

Jens Steube - Advanced password guessing 13

maskprocessor

 Another nice example for how to use maskprocessor is when
you want to generate rules. Rules? Yes!

 I will explain rules a bit more later, but for now Imagine you
want to crack a password and you know it starts with a
uppercase letter and ends with a digit

 You could use grep and pick the right words from your
dictionary

 But you could also add all uppercase letters and all digits to
all of your words in the dictionary

 That sounds crazy but from my experience it’s the better
attack

Jens Steube - Advanced password guessing 14

maskprocessor

 A way to do this is to use rules. I'll explain rules later in more
detail but for now its enough to know its a little
programming language

 With a rule you can only append or prepend 1 specific
character. You can not select a range. But you can have as
many rules as you want

 That makes 26 * 10 rules in total. You want to write that per
hand? Have fun

 You can code a little script to do it or you use maskprocessor
to do it:

 mp64 -o bla.rule '^?l $?d‘

Jens Steube - Advanced password guessing 15

maskprocessor

 If you‘re stuck with a hashlist there is usually no way around
identify the pattern of the cracked passwords

 Once you‘ve figured them out you have another problem:
How do I to tell hashcat how to generate the candidates
without a specific attack-mode?

 The answer is simple. It’s often possible to write your own
attack-modes by a combination of maskprocessor and
hashcat rules

 Maskprocessor is very fast: A single CPU core is around 50-
100 produced MW/s and more. That's typically fast enough
to feed hashcat

 If you‘re writing a cracker you can use maskprocessor to do
the password-generator work

Jens Steube - Advanced password guessing 16

statsprocessor
The special maskprocessor

Jens Steube - Advanced password guessing 17

statsprocessor

 The statsprocessor is basically the same as the
maskprocessor but with one difference:

 It's using markov-chains to optimize the output in
probabilistic order

 As long as you are not modifying the threshold the number
of output to maskprocessor is the same, just the ordering
differs

 The calculation makes it a bit slower than mask-processor
but when you have a slow algorithm like TrueCrypt that
doesn’t matter since the blocking part in this case is the
algorithm, not the generator

Jens Steube - Advanced password guessing 18

Attack-modes Overview
All roads lead to the password

Jens Steube - Advanced password guessing 19

Attack-modes

 Hashcat supports basic attack-modes (not discussed here):
 Dictionary

 Brute-Force

 Hashcat supports advanced attack-modes:
 Combinator

 Table-Lookup

 Toggle-Case

 Permutation

 Fingerprint

 Hybrid

 Rule-based

Jens Steube - Advanced password guessing 20

Combinator attack
Attack-modes

Jens Steube - Advanced password guessing 21

combinator-
attack

 This is one of my favorite attack-modes when reaching a
higher percentage level of cracking a hashlist

 The idea is very simple. You have two dictionaries, not one.
They are named as left and right dictionary

 Each word of the right dictionary is appended to each word
of the left dictionary

 Another way to explain it is: If your left dictionary contains
100 words and the right dictionary contains 50 words, then
the number of total candidates generated is 100 * 50 = 5000

Jens Steube - Advanced password guessing 22

combinator-
attack

 This is a good way to produce full names and compound
words

 Example, if you have a dictionary that contains only first
names:

 Lucy

 Ann

 You can use the same dictionary on both sides, thus
efficiently create full names:

 LucyAnn

 AnnLucy

Jens Steube - Advanced password guessing 23

combinator-
attack

 Usually they are not written that way. What you can do is to
apply an additional single rule per dictionary. That can be
done with the -j and the -k parameters with oclHashcat-plus
or with the combinator.rule in hashcat-CPU

 The Idea is to append a "-" character to each of the words
from the left dictionary:

 Lucy-Ann

 Ann-Lucy

 NOTE: The same works for a space char, too

Jens Steube - Advanced password guessing 24

combinator-
attack

 It’s also effective against passphrases

 Dictionary contains:
 is qazwsxedc key the cure am my <space> pass this Love i

 Results in:
 this is my pass

 i am the cure

 Love is the key

 NOTE: This requires two rounds of hashcat, one using –stdout

 As with all good attack-modes they produce stuff you do not
think of in the first place, so it cracked:

 qazwsxedc<space>

Jens Steube - Advanced password guessing 25

Table attack
Attack-modes

Jens Steube - Advanced password guessing 26

table-attack

 This attack mode is also based on dictionaries. You can attack
the following targets well:

 International characters

 Toggled-case words

 Leetspeek

 Fill “holes” in your dictionary

 The targets also can be combined, like:
 Toggled-case words + Leetspeak

 The table attack takes a configuration file, the "table"

 Inside the table, you do a simple X=Y binding per line
 Where X is a character that is to replace with Y

 NOTE: You can use X multiple times

Jens Steube - Advanced password guessing 27

table-attack

 Example table
 a=A

 a=@

 a=ä

 a=/\

 Example dictionary
 Anita

 Example candidates generated
 AnitA

 Anit@

 Anitä

 Anit/\

Jens Steube - Advanced password guessing 28

Toggle-case attack
Attack-modes

Jens Steube - Advanced password guessing 29

Toggle-Case
attack

 One of the easiest attack-modes

 This attack simply tries all upper- and lower-case of a word
from a dictionary

 If your dictionary contains “abc”, It generates:
 abc

 Abc

 aBc

 ABc

 abC

 AbC

 aBC

 ABC

Jens Steube - Advanced password guessing 30

Toggle-Case
attack

 While this attack is supported, it does not make sense to do
it this way

 Here‘s why: When people use capitalized letters they either
use it at the first letter or the in the word

 There is another variant in which people use less or equal
capitalized letters than lowercase letters. For example,
passwords of length 10 do not have more than 5 uppercased
letters

 oclHashcat-plus therefore uses rules to do Toggle-Case
attack. There are rules for toggling 1-5 letters in the hashcat
rules directory

 Since rules are compatibe between oclHashcat-plus and
hashcat, you can also use them in hashcat

Jens Steube - Advanced password guessing 31

Toggle-Case
attack

 If you really want to do full toggle-case attack you can still
feed oclHashcat-plus from hashcat piped candidates:

 hashcat-cli -a 2 your.dict --stdout | oclHashcat-plus
your.hashlist

 NOTE: This will work efficiently only for slow hashes

Jens Steube - Advanced password guessing 32

Toggle-Case
attack

 If you combine the toggle.rule with leetspeak.rule you can
crack more sophisticated passwords:

 oclHashcat-plus your.hashlist -r rules/toggles3.rule -r
rules/leetspeak.rule

 Produces:
 Scotl@nd

 Sh@mr0ck

 j3sUsFr3aK

 AlexAndr1a

 MyPa$$word

 $ailorM0on

 Admittedly, the table attack is a much better approach to do
this, but there is no table-attack for oclHashcat-plus. This is a
good emulation

Jens Steube - Advanced password guessing 33

Permutation attack
Attack-modes

Jens Steube - Advanced password guessing 34

Permutation-
attack

 This attack mode was an idea that for some reason never
really
worked well

 I want to show what the Idea was, maybe you can use it

 Permutation attack is exactly what it sounds like:

 ABC

 ACB

 BAC

 BCA

 CAB

 CBA

Jens Steube - Advanced password guessing 35

Permutation-
attack

 The original Idea was that if the user has the following word
in his dictionary:

 Pass123

 It will produce the following candidates:
 pass123

 pass321

 1pass23

 3pass21

 12pass3

 32pass1

 123pass

 321pass

Jens Steube - Advanced password guessing 36

Permutation-
attack

 From my experience these are passwords that people
actually use

 NOTES:
 It's supported in hashcat CPU only, you can use --stdout

 It's also a standalone binary in hashcat-utils in case you
find a different use for it

Jens Steube - Advanced password guessing 37

Fingerprint attack
Attack-modes

Jens Steube - Advanced password guessing 38

Fingerprint-
attack

 The fingerprint attack is by far to complex to discuss is in
here

 The goal is to crack complex passwords like this:

 10-D'Ann

 But in an automated way so that it does not require human
attention

 It makes extensive use of the expander utility that comes
with hashcat-utils

 Read more about the fingerprint attack on the hashcat wiki

Jens Steube - Advanced password guessing 39

Fingerprint-
attack

 We used it at Defcon 2010 when team hashcat won the
"Crack Me If You Can" competition

 The autocrack-plus.pl cracking helper also makes use of this

 There are also example videos made by the backtrack
developers to explain it, you can find it on youtube.

Jens Steube - Advanced password guessing 40

Rule-based attack
Attack-modes

Jens Steube - Advanced password guessing 41

Rule-based
attack

 The rule-based attack is the first attack I do against large
unsalted hashlists because its the most economic one

 The chosen candidates have a very high probability and the
dictionary this attack bases only can be chosen freely

 Everyone who ever used oclHashcat-plus knows that it
requires some workload to run with full speed. That is
because the GPU must be remain busy

 If I run just a dictionary again a large hashlist it will crack a lot
but the GPU will idle

 Add rules too because it costs you nothing in terms of time.
The number of additionally produced candidates are for free
because of the performance gain you get

Jens Steube - Advanced password guessing 42

Rule-based
attack

 Rules are little programming language. Hashcat (among
others) has a built-in interpreter for it. It’s specially designed
for word manipulations. The user can program it pretty
easily.

 The functions you can use are very basic

 There is a rule to append character and to prepend, you can
cut around ranges, reverse the words, etc..

 Read all about how to write and use rules on the hashcat
wiki

 There is also a few example rules in the rules/ folder for
hashcat and oclHashcat-plus you can take a look at

Jens Steube - Advanced password guessing 43

Rule-based
attack

 With hashcat you can let it write debugging information
about how the rule engine processed a word to crack a
password, what the basic password was, what the rule was,
etc. that you can build up statistics about their efficiency

 This is a unique feature

 We have already use it to rules/generate.rule file
automatically

 You can also use the --stdout option, see debugging section

Jens Steube - Advanced password guessing 44

Rule-based
attack

 There is another unique feature in oclHashcat-plus that
allows you to stack rules. You can configure to use multiple
rules files.

 NOTE: that does not mean to execute them in a
sequence

 The multi-rule feature combines like the combinator-attack
each rule of both rule-files with each other

 You can this way create new attack-modes. There is a special
subfolder hybrid/ in the rules/ folder that are simple with
maskprocessor generator rules that just appends all letters

 There is another one that does the same, but prepends all
letters

Jens Steube - Advanced password guessing 45

Rule-based
attack

 If you use them together with -r rules/hybrid/prepend_l.rule
-r rules/hybrid/append_l.rule it actually does both things at
once with your words

 If you have “xpasswordy" to be cracked, and you dictionary
contains "password", you will crack it

Jens Steube - Advanced password guessing 46

Hybrid attack
Attack-modes

Jens Steube - Advanced password guessing 47

Hybrid-attack

 Hybrid attacks is my favourite attack against large unsalted
hashlists for dictionary building once I've finished rules

 It's common knowledge people append years, birthdays and
number to names, locations, etc, right?

 But which ones and how can you be sure you hit the right
one? You cant so you have to guess

 But using brute-force to attack against names and locations
seems inefficient, no?

Jens Steube - Advanced password guessing 48

Hybrid-attack

 The hybrid attack has two parameters. One is a dictionary
and one is a mask. Again, you see why its important to
understand masks here

 Simply defined, the hybrid attack brute-forces a range and
this range is appended or prepended to each word from your
dictionary

 You can choose whatever side you want the dictionary, the
left or the right side. I recommend to try both

 But depending on the side were you place the dictionary, you
should change the mask

Jens Steube - Advanced password guessing 49

Hybrid-attack

 When you have the dictionary on the right side it’s more
common users choose numbers or symbols to make the
password “more secure“

 Example:

 Julia1984

 Password1!!@

 NewYork1+2

 You should craft your mask like this: -1 ?d?s ?1?1?1

Jens Steube - Advanced password guessing 50

Hybrid-attack

 But there is more Fun stuff. You can "exploit" this mode to
crack passwords which are only partially in your dictionary.

 For example, you want to crack:

 thecathat

 But you have just the word "thecat" in your dictionary, the
mask ?l?l?l appended to will crack it

 It‘s again one of these attack-modes that will result in
cracked passwords you did not think of in the first place or
you did not target directly but you‘ll get them as a bonus

Jens Steube - Advanced password guessing 51

Hybrid-attack

 The opposide side is also nice, but you should change the
type of masks you're attacking

 Typically this is good if you have partial passwords again and
the password to be cracked is capitalized

 You have the password "Telephone" but your dictionary only
contains "phone", the mask ?u?l?l?l would crack it

Jens Steube - Advanced password guessing 52

Hybrid-attack

 I'll leave this attack-mode and recommend you my absolute
favorite attack:

 -a 6 my.dict -1 ?l?d?s ?1?1?1

Jens Steube - Advanced password guessing 53

Using hashcat’s --stdout
… to feed other crackers

Jens Steube - Advanced password guessing 54

Using hashcat’s
--stdout

 Hashcat is still a young project (compared to other crackers)
not all hash-algorithms are supported yet

 If you need to use a different cracker like JtR to crack an
unsupported hash you can still use hashcat‘s advanced
attack-modes to feed them with candidates

 It‘s simple:

 hashcat-cli -a 2 my.dict --stdout | john --pipe my.hash

 As long as the cracker supported reading plains from stdin
this should work. If you‘re coding a special cracker for
something this could help you to focus on the cracking part,
not on the generating part.

Jens Steube - Advanced password guessing 55

Debugging
Is it doing what you want it to do?

Jens Steube - Advanced password guessing 56

Debugging

 Often you prepare something you think this is what you want
but then it runs and runs and nothing happens

 You begin to think did I everything correctly?

 Attack-modes can become very complex, you better take a
look at it!

Jens Steube - Advanced password guessing 57

Debugging

 In hashcat (CPU only!) you can use the --stdout parameter

 As discussed in the previous section, this parameter is
primary used to pipe candidates outputs into external
programs but you can also use it to see what hashcat is doing

 In oclHashcat-plus you can not, but the attack-modes are
compatible. If you want to debug stuff for oclHashcat-plus
you can use hashcat

 If the output does not match what you think it does you
don’t need to worry any longer

Jens Steube - Advanced password guessing 58

Debugging

 It can also help to learn rules. Try it, just create a single rule-
file and place into it:

 $1

 Save it and then execute hashcat-cli -r my.rule --stdout
some.dict

 All candidates should have a 1 appended

 This works for all attack-modes

Jens Steube - Advanced password guessing 59

Thank you
for listening!

 Feel free to contact me!

 via Twitter: @hashcat

 via Hashcat forum: http://hashcat.net/forum/

 via IRC: freenode #hashcat

 via Email: atom at hashcat.net

Jens Steube - Advanced password guessing 60

